iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle.
نویسندگان
چکیده
Nitric oxide synthase (NOS) expression is regulated transcriptionally in response to cytokine induction and posttranslationally by palmitoylation and trafficking into perinuclear aggresome-like structures. We investigated the effects of multifunctional calcium/calmodulin-dependent protein kinase II protein kinase (CaMKII) on inducible NOS (iNOS) trafficking in cultured rat aortic vascular smooth muscle cells (VSMCs). Immunofluorescence and confocal microscopy demonstrated colocalization of iNOS and CaMKIIdelta(2) with a perinuclear distribution and concentration in aggresome-like structures identified by colocalization with gamma-tubulin. Furthermore, CaMKIIdelta(2) coimmunoprecipitated with iNOS in a CaMKII activity-dependent manner. Addition of Ca(2+)-mobilizing stimuli expected to activate CaMKII; a purinergic agonist (UTP) or calcium ionophore (ionomycin) caused a general redistribution of iNOS from cytosolic to membrane and nuclear fractions. Similarly, adenoviral expression of a constitutively active CaMKIIdelta(2) mutant altered iNOS localization, shifting iNOS from the cytosolic fraction. Suppression of CaMKIIdelta(2) using an adenovirus expressing a short hairpin, small interfering RNA increased nuclear iNOS localization in resting cells but inhibited ionomycin-induced translocation of iNOS to the nucleus. Following addition of these chronic and acute CaMKII modulators, there were fewer aggresome-like structures containing iNOS. All of the treatments that chronically affected CaMKII activity or expression significantly inhibited iNOS-specific activity following cytokine induction. The results suggest that CaMKIIdelta(2) may be an important regulator of iNOS trafficking and activity in VSMCs.
منابع مشابه
Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملInsulin-stimulated cyclic guanosine monophosphate inhibits vascular smooth muscle cell migration by inhibiting Ca/calmodulin-dependent protein kinase II.
BACKGROUND Insulin resistance is associated with vascular disease. Physiological concentrations of insulin inhibit cultured vascular smooth muscle cell (VSMC) migration in the presence of nitric oxide, and the failure to do so in insulin-resistant states may aggravate vascular disease. We sought to determine the molecular mechanisms by which insulin inhibits VSMC migration. METHODS AND RESULT...
متن کاملUrotensin II-induced signaling involved in proliferation of vascular smooth muscle cells
The urotensin II receptor, bound by the ligand urotensin II, generates second messengers, ie, inositol triphosphate and diacylglycerol, which stimulate the subsequent release of calcium (Ca(2+)) in vascular smooth muscle cells. Ca(2+) influx leads to the activation of Ca(2+)-dependent kinases (CaMK) via calmodulin binding, resulting in cellular proliferation. We hypothesize that urotensin II si...
متن کاملGIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells.
OBJECTIVE The G protein-coupled receptor (GPCR)-kinase2 interacting protein1 (GIT1) is a scaffold protein involved in angiotensin II (Ang II) signaling. Histone deacetylase-5 (HDAC5) has emerged as an important substrate of calcium/calmodulin-dependent protein kinase II (CamK II) in GPCR signaling. Here we investigated the hypothesis that Ang II-mediated vascular smooth muscle cell (VSMC) gene ...
متن کاملCaM kinase IIalpha mediates norepinephrine-induced translocation of cytosolic phospholipase A2 to the nuclear envelope.
Several growth factors, hormones and neurotransmitters, including norepinephrine, increase cellular calcium levels, promoting the translocation of cytosolic phospholipase A(2) to the nuclear envelope. This study was conducted to investigate the contributions of the calcium-binding protein calmodulin and of calcium-calmodulin-dependent protein kinase II to cytosolic phospholipase A(2) translocat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 292 6 شماره
صفحات -
تاریخ انتشار 2007